Производная и первообразная показательной функции. Тема урок производная показательной функции число е Производные гиперболических функций

График показательной функции представляет собой кривую плавную линию без изломов, к которой в каждой точке, через которую она проходит, можно провести касательную. Логично предположить, что если можно провести касательную, значит функция будет дифференцируема в каждой точке своей области определения.

Отобразим в одних координатных осях несколько графиков функции y = x a , Для а = 2; a = 2,3; a = 3; a = 3,4.

В точке с координатами (0;1). Углы наклона этих касательных будут равны приблизительно 35, 40, 48 и 51 градусов соответственно. Логично предположить, что на интервале от 2 до 3 существует число, при котором угол наклона касательной будет равен 45 градусов.

Дадим точную формулировку этого утверждения: существует такое число большее 2 и меньшее 3, обозначаемое буквой е, что показательная функция y = e x в точке 0, имеет производную равную 1. То есть: (e ∆x -1) / ∆x стремится к 1 при стремлении ∆х к нулю.

Данное число e является иррациональным и записывается в виде бесконечной непериодической десятичной дробью:

e = 2,7182818284…

Так как число е положительно и отлично от нуля, то существует логарифм по основанию e. Данный логарифм называется натуральным логарифмом . Обозначается ln(x) = log e (x).

Производная показательной функции

Теорема: Функция e x дифференцируема в каждой точке своей области определения, и (e x)’ = e x .

Показательная функция a x дифференцируема в каждой точке своей области определения, и причем (a x)’ = (a x)*ln(a).
Следствием из этой теоремы является тот факт, что показательная функция непрерывна в любой точке своей области определения.

Пример: найти производную функции y = 2 x .

По формуле производной показательной функции получаем:

(2 x)’ = (2 x)*ln(2).

Ответ: (2 x)*ln(2).

Первообразная показательной функции

Для показательной функции a x заданной на множестве вещественных чисел первообразной будет являться функция (a x)/(ln(a)).
ln(a) - некоторая постоянная, тогда (a x / ln(a))’= (1 / ln(a)) * (a x) * ln(a) = a x для любого х. Мы доказали эту теорему.

Рассмотрим пример на нахождение первообразной показательной функции.

Пример: найти первообразную к функции f(x) = 5 x . Воспользуемся формулой приведенной выше и правилами нахождения первообразных. Получим: F(x) = (5 x) / (ln(5)) +C.

Урок и презентация на тему: "Число e. Функция. График. Свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Ребята, сегодня мы будем изучать особенное число. Оно занимает отдельное место во "взрослой" математике и имеет много замечательных свойств, некоторые из которых мы и рассмотрим.

Вернемся к показательным функциям $y=a^x$, где $а>1$. Мы можем построить множество различных графиков функций для различных оснований.
Но следует заметить, что:

  • все функции проходят через точку (0;1),
  • при $х→-∞$ график имеет горизонтальную асимптоту $у=0$,
  • все функции возрастают и выпуклы вниз,
  • а также непрерывны, что в свою очередь означает, что они дифференцируемы.
Если функции всюду дифференцируемы, тогда к ним можно построить касательные в каждой точке. Если все функции проходят через точку (0;1), то она представляет особый интерес. Давайте последовательно построим несколько касательных.

Рассмотрим функцию $y=2^x$ и построим к ней касательную.
Аккуратно построив наши графики, можно заметить, что угол наклона касательной равен 35°.
Теперь давайте построим график функции $y=3^x$ и также построим касательную:
В этот раз угол наклона касательной приблизительно равен 48°. Вообще, стоит заметить: чем больше основание показательной функции, тем больше угол наклона.
Особый интерес представляет касательная с углом наклона равным 45°. К графику какой показательной функции можно провести такую касательную в точке (0;1)?
Основание показательной функции должно быть больше 2, но меньше 3, так как требуемый угол касательной достигается где-то между функциями $y=2^x$ и $y=3^x$. Такое число было найдено и оно оказалось довольно уникальным.

Показательную функцию, у которой касательная, проходящая через точку (0;1) имеет угол наклона равный 45°, принято обозначать: $y=e^x$ .
Основание нашей функции является иррациональным числом. Математиками было выведено приблизительное значение этого числа $e=2.7182818284590…$.
В курсе школьной математике принято округлять до десятых, то есть $e=2.7$.
Давайте построим график функции $y=e^x$ и касательную к этому графику.
Нашу функцию принято называть экспоненциальной.
Свойства функции $y=e^x$.
1. $D(f)=(-∞;+∞)$.
2. Не является ни четной, ни нечетной.
3. Возрастает на всей области определения.
4. Не ограничена сверху, ограничена снизу.
5. Наибольшего значения нет, наименьшего значения нет.
6. Непрерывна.
7. $E(f)=(0; +∞)$.
8. Выпукла вниз.
В высшей математике доказано, что экспоненциальная функция всюду дифференцируема, и ее производная равна самой функции: $(e^x)"=e^x$.
Наша функция находит большое применение в многих разделах математики (в математическом анализе, в теории вероятности, в программировании), и многие реальные объекты связаны с этим числом.

Пример.
Найти касательную к графику функции $y=e^x$ в точке $х=2$.
Решение.
Уравнение касательной описывается формулой: $y=f(a)+f"(a)(x-a)$.
Последовательно найдем требуемые значения:
1. $f(a)=f(2)=e^2$.
2. $f"(a)=e^a$.
3. $f"(2)=e^2$.
4. $y=f(a)+f"(a)(x-a)=e^2+e^2(x-2)=e^2*x-e^2$.
Ответ: $y=e^2*x-e^2$

Пример.
Найти значение производной функции $y=e^{3x-15}$ в точке $х=5$.
Решение.
Давайте вспомним правило дифференцирования функции вида $y=f(kx+m)$.
$y"=k*f"(kx+m)$.
В нашем случае $f(kx+m)=e^{3x-15}$.
Найдем производную:
$y"=(e^{3x-15})"=3*e^{3x-15}$.
$y"(5)=3*e^{15-15}=3*e^0=3$.
Ответ: 3.

Пример.
Исследовать на экстремумы функцию $y=x^3*e^x$.
Решение.
Найдем производную нашей функции $y"=(x^3*e^x)"=(x^3)"*e^x+x^3(e^x)"=3x^2*e^x+x^3*e^x=x^2*e^x(x+3)$.
Критических точек у функции нет, так как производная существует при любом х.
Приравняв производную к 0, получаем два корня: $x_1=0$ и $x_2=-3$.
Отметим наши точки на числовой прямой:

Задачи для самостоятельного решения

1. Найти касательную к графику функции $y=e^{2x}$ в точке $х=2$.
2. Найти значение производной функции $y=e^{4x-36}$ в точке $х=9$.
3. Исследовать на экстремумы функцию $y=x^4*e^{2x}$.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ПРОИЗВОДНАЯ ПОКАЗАТЕЛЬНОЙ ФУНКЦИИ Число е 11 класс

ПОВТОРЕНИЕ – мать учения!

Определение показательной функции Функция, заданная формулой у = а х (где а >0, а ≠ 1), называется показательной функцией с основанием а.

Свойства показательной функции у = а х а>1 0

Определение производной функции в точке х 0 . при Δ → 0. Производной функции f в точке х 0 называется число, к которому стремится разностное отношение при Δх → 0.

Геометрический смысл производной x ₀ α A y = f(x) 0 x y к = tg α = f " (x ₀) Угловой коэффициент к касательной к графику функции f (x) в точке (х 0 ; f (x 0) равен производной функции f "(x ₀). f(x 0)

Игра: «Найди пары» (u + v)" cos x e (u · v)" n· xⁿ ⁻" п (u / v)" - 1 /(sin² x) a (x ⁿ)" - sin x н C" u" v +u v" к (C u)" 1 / (cos ² x) т (sin x)" (u" v – u v") / v² c (cos x)" 0 o (tg x)" u" + v " э (ctg x)" C u" н

Проверь себя! (u + v)" u" + v" э (u · v)" u"· v + u· v " к (u /v)" (u‘ · v –u · v") / v² с (x ⁿ)" n · x ⁿ ⁻¹ п C" 0 о (Cu)" C u " н (sin x)" Cos x е (cos x)" - sin x н (tg x)" 1 / (cos² x) т (ctg x)" - 1 / (sin² x) а

Экспонента - это степенная функция. Экспонента - функция, где e - основание натуральных логарифмов.

1 у= е х 45° Функция у= е х называется «экспонента» х ₀ =0; tg 45° = 1 В точке (0;1) угловой коэффициент к касательной к графику функции к = tg 45° = 1 - геометрический смысл производной экспоненты Экспонента у = е х

Теорема 1. Функция у = е дифференцируема в каждой точке области определения, и (е)" = е х х х Натуральным логарифмом (ln) называется логарифм по основанию е: ln x = log x е Показательная функция дифференцируема в каждой точке области определения, и (а)" = а ∙ ln a x x Теорема 2 .

Формулы дифференцирования показательной функции (e)" = e ; (e)" = k e ; (a)" = a ∙ ln a ; (a)" = k a ∙ ln a . x kx + b x x x kx + b kx + b kx + b F(a x) = + C; F(e x) = e x +C.

«Упражнения рождают мастерство.» Тацит Публий Корнелий - древнеримский историк

Примеры: Найти производные функций: 1. = 3 е. 2. (е)" = (5х)" е = 5 e . 3. (4)" = 4 ln 4. 4. (2)" = (-7 х)" 2 ∙ ln 2 = -7 ∙ 2 ∙ ln 2 . 5 х 5 х х (3 е)" 5 х -7 х х х -7 х -7 х х

Интересное рядом

Леонард Эйлер 1707 -1783 г.г. Русский ученый – математик, физик, механик, астроном… Ввел обозначение числа е. Доказал, что число е ≈ 2, 718281…-иррациональное. Джон Непер 1550 – 1617 г.г. Шотландский математик, изобретатель логарифмов. В его честь число е называют « неперовым числом».

Рост и убывание функции со скоростью экспоненты называется экспоненциальным

Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1) (e x )′ = e x .

Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a :
(2) .

Вывод формулы производной экспоненты, e в степени x

Экспонента - это показательная функция, у которой основание степени равно числу e , которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.

Вывод формулы производной экспоненты

Рассмотрим экспоненту, e в степени x :
y = e x .
Эта функция определена для всех . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты :
(4) ;
Б) Свойство логарифма :
(5) ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела :
(7) .

Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.

Сделаем подстановку . Тогда ; .
В силу непрерывности экспоненты,
.
Поэтому при , . В результате получаем:
.

Сделаем подстановку . Тогда . При , . И мы имеем:
.

Применим свойство логарифма (5):
. Тогда
.

Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.

Тем самым мы получили формулу (1) производной экспоненты.

Вывод формулы производной показательной функции

Теперь выведем формулу (2) производной показательной функции с основанием степени a . Мы считаем, что и . Тогда показательная функция
(8)
Определена для всех .

Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма .
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.

Производные высших порядков от e в степени x

Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:
(14) .
(1) .

Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.

Отсюда видно, что производная n-го порядка также равна исходной функции:
.

Производные высших порядков показательной функции

Теперь рассмотрим показательную функцию с основанием степени a :
.
Мы нашли ее производную первого порядка:
(15) .

Дифференцируя (15), получаем производные второго и третьего порядка:
;
.

Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.